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Abstract 
The paper describes a mathematical model of changes in the geometry of thin-shell struc-

tures for visualization of the analysis data on their stress-strain state (SSS). 
Based on this mathematical model, a module for shell SSS visualization using VR and AR 

technologies was developed. The interactive visualization environment Unity 2019.3 and C# 
programming language were used. The interactive visualization module makes a 3D image of 
a shell structure and visualizes the SSS either through heat maps over the shell or through the 
changes in the shell geometry via the shell type, its geometric characteristics, and SSS analy-
sis data (transferred to the visualization module by means of a JSON file). 

While working on the visualization module, the authors developed a software system that 
makes it possible to visualize any 3D surface with coordinate axes (including numbers with a 
pitch determined automatically), visualize heat maps with a graduated scale, visualize a mesh 
over the graph to improve the perception of the surface deformations. The middle surface de-
formation can also performed via SSS analysis data. 

This solution increases the efficiency of the work of specialists in civil engineering and ar-
chitecture and can be used when training specialists in courses on thin-shell structures and 
procedural geometry. 

  
Keywords: shells, stress-strain state, virtual reality, augmented realty, parametric mod-

eling, Ritz method, Unity. 

 

1. Introduction 
Thin-shell structure (or shell) is a body bounded by two curved surfaces, the greatest distance 
between which is much less than any other size. (Fig. 1). Great attention is paid to studies on 
shells since such structures are highly strong and stiff and have a variety of design shapes [1], 
[2]. Thin-shell structures are often used in shipbuilding, aircraft and spacecraft construction, 
mechanical and civil engineering. 
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Fig. 1. Thin-walled shell structure 

 
During operation shell structures are subjected to various influences (mechanical static loads, 
vibrations, shock loads, temperature effects, etc.) and can also exhibit various properties (loss 
of stability, plastic deformation, material creep, etc.). Thereat, a wide class of problems arises 
that require research. The capabilities of modern computer hardware make it possible to per-
form calculations with high accuracy and consideration of complex nonlinear effects.  
The current state of different shell theory branches be found in review articles [3-8]. 
Although the visualization of complex engineering processes is very important [9], the issues 
of shell visualization have not been solved in full. The research on shells often covers only the 
stress-strain state (hereinafter — the SSS) of a shell structure relative to the middle surface 
(Fig. 2), while deformations in the global coordinates are not considered. The middle surface 
of a shell is the locus of points equidistant from the two surfaces that form this shell. Alt-
hough such software packages as ANSYS and LIRA-SAPR enable graphic visualization of de-
formations, there is no standard technique or algorithm of visualization of deformed shells 
for variational analysis methods which are widely used in shell modeling [10-12]. In the 
meantime, the use of variational methods such as the Ritz method can significantly improve 
the accuracy of the analysis and reduce its time [2]. 
 

 
Fig. 2. Visualization of vertical displacements relative to the middle surface 

 



Informative visualization of the SSS of shells is important for their detailed study [13]. In 
many cases, a researcher will examine the analysis data more efficiently if they are presented 
as a 3D animation rather than static contoured maps or 2D graphs. For example, using the 
shell structure’s stress-strain state 3D visualization it is possible to verify the results of calcu-
lations with field experiments [14]. 
VR and AR technologies are particularly important in this context [15, 16]. Virtual reality 
gives a 3D representation of structural deformations. This allows visualizing the change in 
shell geometry more accurately relatively to its original dimensions. Augmented reality makes 
it possible to see the structure in the real world, which is also useful for studies on shell struc-
tures. For example, augmented reality allows visualizeing the 3D-model of the deformed shell 
on top of a paper report of its SSS study. This provides theo significant increase in the infor-
mation on used documentation tools. 
The purpose of this study is to develop a software package (hereinafter — the SP) for the 
analysis of the SSS and visualization of shell structures using VR and AR technologies. To 
achieve this purpose, different problems were solved: 
A mathematical model of the thin-shell structure geometric data was formed. This model de-
fines shell geometry in the global coordinate system and allows the addition of deformation 
data obtained during SSS calculation. 
A software package has been implemented that generates geometry based on the calculation 
results. It allows visualizing various fields of SSS and provides standard elements for visualiz-
ing 3D graphs (such as coordinate axes and heat maps). 

2. SP Architecture 
The software package consists of two modules: the SSS analysis module and the visualization 
module. The SP architecture is shown in Fig. 3. 
The analysis module performs shell structure SSS analysis that is based on the functional of 
the total strain energy using GPU. The Ritz method [2] is used for the numerical solution of 
the variational problem. This method reduces the problem of minimizing the functional to the 
problem of minimizing the function of multiple variables. The results of the SSS analysis that 
fully describe the deformation of the shell structure in all its points are the coefficients of ap-
proximation functions that provide the functional minimum. The analysis data can be export-
ed by means of JSON files for subsequent visualization in the visualization module.  
 

 
Fig. 3. Software package for shell analysis 

 
The visualization module deserializes the file with the SSS analysis data, performs procedural 
generation of the geometry of the shell structure, and, then, visualizes the SSS through either 
heat maps presented over the shell or through changing the geometry of the shell structure. 
The main feature of the described solution is the ability to render shell SSS using virtual and 
augmented reality technologies. Recently, there are no solutions that allow visualizing the 
calculation results stored in standard formats (such as VTK) on mobile augmented or virtual 
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reality platforms. For this reason, existing renderers (such as ParaView) couldn’t be used and 
a custom rendering solution was developed. Visualization module imports the analysis results 
in custom data format used for SSS data storage in the analysis module because using other 
data formats doesn’t provide benefits within the investigated problem. 

3. SSS of a Shell 
Analysis of the SSS of a shell structure means minimization of the functional of the total po-
tential strain energy (which is a sum of the work of internal and external forces) in the Timo-
shenko (Reissner–Mindlin) model. The Ritz method is used for numerical search for the 
functional minimum. It reduces the variational problem to a problem of unconstrained opti-
mization of the function of several variables. For this purpose, the required displacements 

functions      yxWyxVyxU ,,,,,  as well as functions of normal segment turning angles to the 
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where approximation functions llkk YYXX 5151 ,   are known and predetermined by the condi-

tions of shell fixing, and parameters klkl PNU   are unknown numeric coefficients; N  – is the 

quantity of expansion terms.  

Thus, the functional  yxss WVUEE  ,,,,  (complete expression is given in [2, 17]) is ap-

proximated by the function of several variables, and it is sufficient to use the approximation 
functions and the numeric coefficients’ values ensuring the minimum of the functional to re-
cover the SSS analysis data. 

4. Geometry of a Shell 
When using variational principles for making a mathematical model, the geometry of a shell 
structure is found through Lame parameters and principal curvatures. However, it does not 
seem too comfortable to make a curvilinear coordinate system to generate the geometry of a 
shell structure based on these parameters only. Papers dealing with shell visualization [18] 
suggest using a parametric notation for shell structures instead. 
Many shells can be described in the parametric form, which relates each of the points of the 
middle surface in a 2D space to a point in a 3D coordinate system. Therefore, the question of 
how deformations are applied to the shell middle surface should be solved. In this paper, the 
local basis in each point of the middle surface is used to solve this problem, which makes it 
possible to use displacements in the global coordinates instead of displacements 

     yxWyxVyxU ,,,,,  relative to the middle surface. We build the geometry of a shell with a 

certain thickness h, ratios for displacements in an arbitrary layer of the shell from the Timo-
shenko model that is a base for the analysis for the middle surface. 
Let us describe a parametric shell in a generalized form below. Each point of such a shell is 
determined through the following ratios: 
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To apply deformations, i.e. displacement of the points in a horizontal, vertical and normal di-

rections, to such a geometry, we need to find vectors 
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each point of the shell, after which they should be normalized. These vectors determine the 
horizontal and vertical directions of displacement of the points, respectively. The vector 
product of these normalized vectors is the normal to the surface of the shell in the point 

 yxNW , . Sign of the normal vector is defined so that it shows the direction from the inside-

out. Analytical expressions of the basis of these vectors are derived for various types of shell 
structures in this paper. 

4.1. Doubly Curved Shallow Shell 

The input parameters of a doubly curved shallow shell are linear dimensions a, b, and radii of 

circular arcs 21 , RR . Let us introduce additional parameters    2121 ,min,max RRRRR   and 

 21 ,min RRr  . In this case, the parametric form for this shell will be as follows: 
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where x is the turning angle of a small radius; y is the turning angle of a large radius. 
The expression for the basis in each point of the shell is as follows: 
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The middle surface of a shallow shell is given in Fig. 4. 
 

 
Fig. 4. Middle surface of a doubly curved shallow shell 



4.2. Spherical Shell 

The input parameters of a spherical shell are linear parameters a, a1, b and radius R. The par-
ametric form of a spherical shell is as follows: 
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where x and y coincide with the latitude and longitude, respectively. The basis in the point of 
the middle surface is determined as follows:  
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The appearance of the middle surface of a spherical shell is given in Fig. 5. 
 

 
Fig. 5. Middle surface of a spherical shell 

4.3. Toroid-Shape Shell 

The model of a toroid-shape shell coincides with the model of a spherical shell but includes 
displacement d1 from the vertical axis of rotation of the sphere. The parametric form of a to-
roid-shape shell is as follows: 
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The basis in the point of the middle surface is determined as follows: 
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The appearance of the middle surface of a toroid-shape shell is given in Fig. 6. 
 



 
Fig. 6. Middle surface of a toroid-shape shell 

4.4. Cylindrical Shell 
The input parameters of a cylindrical shell are linear dimensions a, a1, b and radius R. The 
parametric form of a cylindrical shell is as follows: 
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Curvilinear coordinate x is along the element, while curvilinear coordinate y is along the cir-
cle made by the cross-section of the cylinder with a plane parallel to its base.  
The basis in an arbitrary point of the middle surface is as follows: 
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The appearance of the middle surface of a cylindrical shell is given in Fig. 7. 
 

 
Fig. 7. Middle surface of a cylindrical shell 

4.5. Catenoid Shell 
The input parameters of a catenoid shell are linear dimensions a, a1, b and parameter c. The 
parametric form of a catenoid shell is as follows: 
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The basis for such a shell takes the following form: 
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The appearance of the middle surface of a catenoid shell is given in Fig. 8. 
 

 
Fig. 8. Middle surface of a catenoid shell 

4.6. Conical Shell 

The input parameters of a conical shell are linear dimensions a, a1, b. The parametric form of 
a conical shell is as follows: 
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Curvilinear coordinate x is along the element, while curvilinear coordinate y is along the cir-
cle made by the cross-section of the cone with a plane parallel to its base.  
The basis for a conical shell is as follows: 
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The appearance of the middle surface of a conical shell is given in Fig. 9. 
 

 
Fig. 9. Middle surface of a conical shell 

5. Deformed shell geometry 
After the determination of shell’s middle surface parametric form and it’s local basis at each 
point, it is possible to build a deformed structure in the global coordinate system. 

Let 0M  be a point of shell’s middle surface. Then the coordinates of this point after shell load-

ing and the following deformation DM  is defined as follows: 

,0 WNVNUNMM WVUD   (15) 

where the negative sign in front of the term responsible for the vertical component of defor-
mation is due to the positive direction of the shell deflection. 
Formula (15) allows constructing the deformed geometry of shell’s middle surface. In order to 
move from middle surface to bulk body, it is necessary to determine how various layers of 
shell are deformed. 
According to Timoshenko-Reisner model, during deformation a rectilinear shell element, ini-
tially normal to middle surface, remains rectilinear, but not necessarily normal. In this case, 
the displacements in the layer spaced z from the middle surface have the form: 
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where yx  ,  are the rotation angles of segment normal to the middle surface in sections zx0  

and zy0  respectively. Fig. 10 shows the results of shell visualization with zero thickness (i.e, 

visualization of the middle surface) and with thickness equal to 0.09 m. 
 



 
Fig. 10. Shell visualization with zero thickness (top)  

and with thickness equal to 0.09 m (bottom). 

6. Shell Visualization 
To implement the shell visualization module that uses VR and AR technologies, the interac-
tive visualization environment Unity 2019.3 and C# programming language were used. The 
interactive visualization module makes a 3D image of a shell structure and visualizes the SSS 
either through heat maps over the shell or through the changes in the shell geometry that de-
pend on the shell type, its geometric characteristics, and SSS analysis data (transferred to the 
visualization module by means of a JSON file). 
In order to generate geometry for different types of shells, the following software architecture 
is proposed. The logic associated with procedural mesh generation is located in abstract class 
ShellGeometryGenerator. This class includes methods for generating bulk body’s mesh, con-
sidering it’s SSS. Child classes of this abstract class must implement methods that describe 
the middle surface of the shell parametrically. Thus, to visualize any type of shell construction 
not considered in this work, it is sufficient to describe its parametric form. 
While working on the visualization module, the authors developed a system of components 
that makes it possible to visualize any 3D surface with coordinate axes (including numbers 
with a pitch determined automatically), visualize heat maps with a graduated scale, visualize 
a mesh over the graph to improve the perception of the surface deformations. The middle sur-
face can also be deformed via SSS analysis data. 
There is an option of using the proposed module without SSS visualization. This visualization 
mode can be useful to architects when they examine various forms of structures and to stu-
dents studying shell structures. This allows for a better understanding of a relationship be-
tween the parameters of a shell structure and its final appearance. 
Visualization module supports virtual reality devices Oculus Rift, HTC Vive, etc.), mobile vir-
tual reality devices (Oculus Quest) and Android mobile devices that support ARCore technol-
ogy. 



7. Results and Discussion 
The SP for visualization of shell structures was tested for shells of various shapes and using 
various visualization options. Fig. 11 provides a demonstration of the SSS of a shell structure 
using heat maps and geometry changes. 
 

 
Fig. 11. Shell before (top) and after (bottom) applying the load 

 
As follows from Fig. 11, visualization has great information capacity and describes data on the 
shell deformation both visually and numerically. The suggested visualization module helps to 
study the shell SSS in real-world scale with the initial proportions preserved. The clarity of 
such visualization in comparison to traditional visualization of the deflection relative to the 
middle surface (Fig. 2) is obvious. 
As stated above, the suggested visualization module not only makes it possible to visualize the 
shell SSS but also can be used by students studying procedural modeling in architecture al-
lowing them to clearly depict shell structures depending on their geometric parameters. 
Fig. 12 presents a shallow shell with lesser curvature radii and larger linear dimensions than 
those in Fig. 10. As you can see, a change in geometric parameters of shells of the same type 
can lead to significant changes in the final shape. 
 



 
Fig. 12. Visualization of a shell with a small radius of rotation 

 
The visualization module implements VR and AR technologies. AR visualization is demon-
strated in Fig. 13. Such visualization can be used in cases where it is required to visually 
demonstrate the coincidence or non-coincidence between physical and mathematical model-
ing results. Also, augmented reality visualization can be used in the preparation of textbooks 
or reports on the study of shell SSS.  
 

 
Fig. 13. AR visualization of a shell 

 
It is planned to extend the functionality of the developed SC in the following directions:  

 Allowing the user to define more complex types of shells, such as cutout shells. 

 Implementing more accurate deformation models in different layers of the shell. 

 Extending functionality of the SC (implementation of interactive cursors, three-
dimensional grid graphics, etc.). 



8. Conclusion 
Thus, a mathematical model was developed that allows visualization of the SSS of shell struc-
ture determined by solving the variational problem. This mathematical model is implemented 
in the form of cross-platform software complex which allows the visualization of SSS with the 
use of virtual and augmented reality technologies. Currently, there are no other works de-
scribing the visualization of shell SSS by using these technologies. 
The developed solution can be used as a tool for informative and clear visualization of the 
shell SSS, as a documenting tool or when training students majoring in architecture and civil 
engineering in courses on thin-shell structures. 
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